Interpreting results of Cochrane reviews and Summary of Findings Tables: GRADE and SoF Workshop

> Monday 22 September 2014 Cochrane Colloquium Hyderabad, India 0900-1700

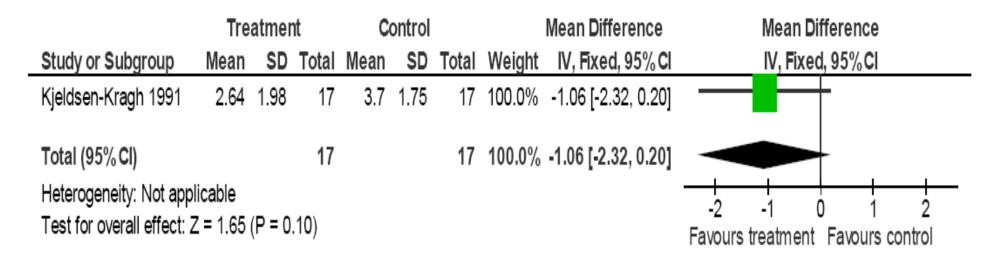
Introductions

Nancy Santesso Elie Akl Alonso Carrasco Maria Ximena Rojas Reyes Madison Zhang

on behalf of the Cochrane Applicability and Recommendations Method Group

Agenda

- 09.00 Introductions
- 09.10 Overview: GRADE in the systematic review process
- 09.30 Background to statistics
- 10.15 Coffee break
- 10.30 Example: working in pairs
- 10.45 How to GRADE the evidence: interactive examples
- 12.00 Lunch break
- 12.45 Using the GRADE criteria: small groups
- 13.45 Hands on use of GDT
- 15.00 Coffee break
- 15.15 Hands on use of GDT
- 15.45 GRADE in unique situations
- 16.45 Summary and Questions
- 17.00 Close



Overview

GRADE

One study: Effect of drug A on pain

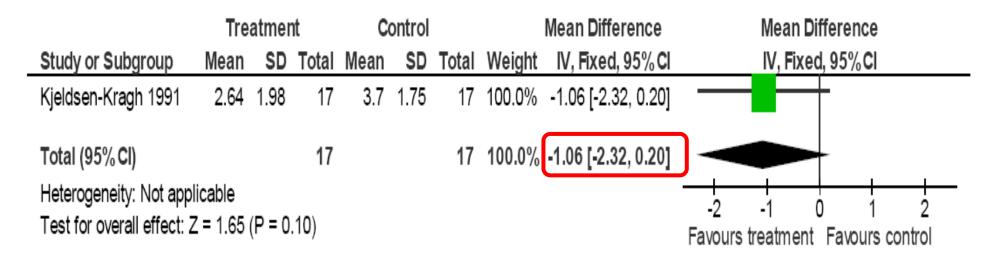
1.1 Pain (0-10) 3 weeks follow up

Narrative synthesis

Acupuncture versus sham in people with chronic back pain

- Two studies measured pain.
- One study (85 people) reported 'no significant difference', in number of persons who reported improvement of pain.
- One study (34 people) reported a difference of 4 points on a scale of 24.

Forest Plot


Effect of caffeine on headache at 24 hours

	Caffeinated (coffee	Decaffeinated o	:offee		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% Cl	IV, Fixed, 95% Cl
Amore-Coffea 2000	2	31	10	34	6.6%	0.22 [0.05, 0.92]	
Deliciozza 2004	10	40	9	40	21.9%	1.11 [0.51, 2.44]	_ _
Mama-Kaffa 1999	12	53	9	61	22.2%	1.53 [0.70, 3.35]	+ - -
Morrocona 1998	3	15	1	17	2.9%	3.40 [0.39, 29.31]	
Norscafe 1998	19	68	9	64	26.4%	1.99 [0.97, 4.07]	
Oohlahlazza 1998	4	35	2	37	5.1%	2.11 [0.41, 10.83]	
Piazza-Allerta 2003	8	35	6	37	14.9%	1.41 [0.54, 3.65]	
Total (95% CI)		277		290	100.0%	1.38 [0.96, 2.00]	•
Total events	58		46				
Heterogeneity: Chi² = 8.58, df = 6 (P = 0.20); l² = 30%			²= 30%				
Test for overall effect: Z = 1.73 (P = 0.08)							0.02 0.1 1 10 50 Favours caffeine Favours decaf

Conclusion?

1.1 Pain (0-10) 3 weeks follow up

Drug A reduces pain. Do you believe it?

Systematic review process

- 1. define the question
- 2. plan eligibility criteria
- 3. plan methods
- 4. search for studies
- 5. apply eligibility criteria
- 6. collect data
- 7. assess studies for risk of bias
- 8. analyze and present results
- 9. interpret results and draw conclusions

10. improve and update review

Two main concepts when interpreting results and drawing conclusions

Confidence in effect Quality of

evidence

How do we....

...interpret results and draw conclusions? GRADE criteria (MECIR standards: mandatory)

....present results to reader/users?

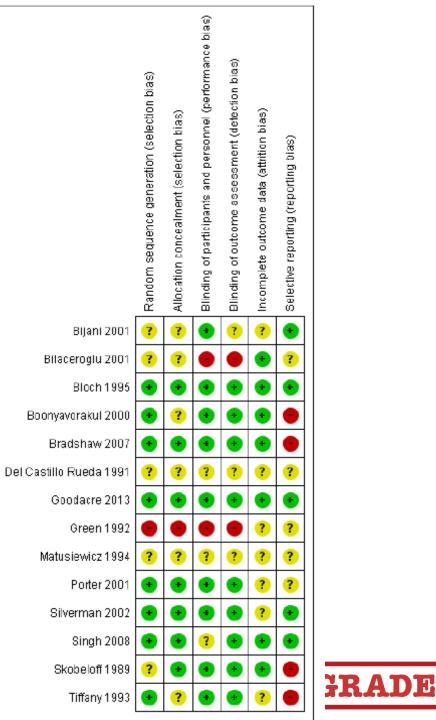
Summary of Findings Tables (MECIR standards: highly desirable)

What should I conclude?

Should I believe the effect that I found?

Intravenous magnesium sulfate for treating adults with acute asthma in the emergency department (Review)

Analysis


Study or subgroup	Magnesium	Placebo	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Bilaceroglu 2001	10/40	17/41		6.3 %	0.47 [0.18, 1.21]
Bloch 1995	17/67	24/68		8.9 %	0.62 [0.30, 1.31]
Boonyavorakul 2000	3/17	4/16		1.7 %	0.64 [0.12, 3.46]
Bradshaw 2007	49/62	52/67		5.3 %	1.09 [0.47, 2.52]
Goodacre 2013	279/394	278/358	-	42.6 %	0.70 [0.50, 0.97]
Green 1992	13/58	11/62		4.1 %	I.34 [0.55, 3.29]
Matusiewicz 1994	45/64	47/67		6.8 %	1.01 [0.48, 2.13]
Porter 2001	5/18	5/24		1.6 %	1.46 [0.35, 6.08]
Silverman 2002	39/122	41/126	+	13.8 %	0.97 [0.57, 1.66]
Singh 2008	2/30	9/30		4.2 %	0.17 [0.03, 0.85]
Skobeloff 1989	7/19	15/19		4.7 %	0.16 [0.04, 0.66]
tal (95% CI)	891	878	•	100.0 %	0.75 [0.60, 0.92]

Test for overall effect: Z = 2.72 (P = 0.0066)

Outcome: I Hospital admissions

Risk of bias assessment

Results section:

Hospital admissions

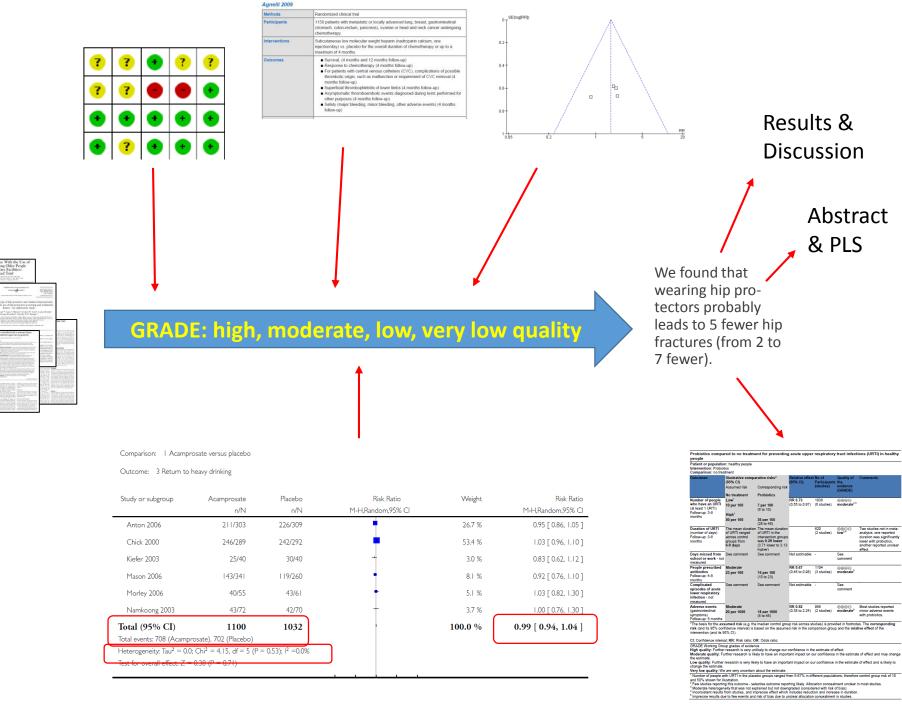
Combining 11 studies (n = 972) revealed a significant reduction in hospital admissions compared with placebo (OR 0.75, 95% CI 0.60 to 0.92; high-quality evidence; Analysis 1.1). Some heterogeneity that was not statistically significant was observed (I2 = 28%; P value) 0.18). In absolute terms, this odds ratio translates to a reduction of seven hospital admissions for every 100 adults (95% CI two to 13 fewer) treated with IVMgSO4 (Figure 3). There was no reason to downgrade for any of the five domains in GRADE (risk of bias, inconsistency, indirectness, imprecision, publication bias). Specifically, risk of bias was generally low or unclear across trials, heterogeneity was not significant, trials matched the research question well, confidence intervals were relatively narrow and almost all studies contributed data to the analysis.

Abstract: Results

Intravenous MgSO4 reduced hospital admissions compared with placebo (odds ratio (OR) 0.75, 95% confidence interval (CI) 0.60 to 0.92; I2 = 28%, P value 0.18; n = 972; high-quality evidence). In absolute terms, this odds ratio translates into a reduction of seven hospital admissions for every 100 adults treated with IV MgSO4 (95% CI two to 13 fewer).... Sensitivity analyses in which unpublished data and studies at high risk for blinding were removed from the primary analysis did not change conclusions.

Abstract conclusions and Plain language summary

This review showed that IV MgSO4 reduces hospital admissions...



Summary of findings table

Outcomes	Illustrative comparative risks	s* (95% CI)	Relative effect (95% CI)	No. of participants (studies)	Quality of the evidence (GRADE)
	Assumed risk	Corresponding risk			
	Control	IV MgSO $_4$			
Hospital admissions	569 per 1000	498 per 1000 (442 to 549)	OR 0.75 (0.60 to 0.92)	1769 (11 studies)	⊕⊕⊕⊕ high ^{1,2}

¹One study introduced risk of bias, but the rest of the studies were generally well conducted.

Determinants to make conclusions

5 factors to consider to evaluate the quality of the evidence

- 1. Risk of bias
- 2. Inconsistency (or heterogeneity)
- 3. Indirectness (PICO and applicability)
- 4. Imprecision (number of events and confidence intervals)
- 5. Publication bias

Plus additional factors for observational studies Dose response, size of effect, confounding

Self management for patients with chronic obstructive pulmonary disease

Patient or population: patients with chronic obstructive pulmonary disease Settings: primary care, community, outpatient Intervention: self management¹ Comparison: usual care

Outcomes	Illustrative compa (95% CI)	Relative effect	No of Participants		Comments	
	Assumed risk usual care	Corresponding risk self management	(95% CI)	(studies)	evidence (GRADE)	
Quality of Life St George's Respiratory Questionnaire. Scale from: 0 to 100. (follow-up: 3 to 12 months)	life ranged across	The mean quality of Life in the intervention groups was 2.58 lower (5.14 to 0.02 lower)		698 (7)	⊕⊕⊕O moderate²	Lower score indicates better quality of life. A change of less than 4 points is not shown to be important to patients.
Dyspnoea Borg Scale. Scale from: 0 to 10. (follow-up: 3 to 6 months)	The mean dyspnoea ranged across control groups from 1.2 to 4.1 points	The mean dysphoea in the intervention groups was 0.53 lower (0.96 to 0.1 lower)		144 (2)	⊕⊕OO low ^{3,4}	Lower score indicates improvement
Number and severity of exacerbations⁵	See comment	See comment	Not estimable⁵	591 (3)	See comment	Effect is uncertain
Respiratory-	Low risk populati	OR 0.64	966	⊕⊕⊕0		
related hospital admissions	10 per 100	7 per 100 (5 to 9)	(0.47 to 0.89)	(8)	moderate ⁷	
(follow-up: 3 to 12 months)	High risk population					
monanoy	50 per 100	39 per 100 (32 to 47)				
Emergency department visits for lung diseases (follow-up: 6 to 12 months)	The mean emergency department visits for lung diseases ranged across control groups from 0.2 to 0.7 visits per person per year			328 (4)	⊕⊕⊕O moderate ⁴	
Doctor and nurse visits (follow-up: 6 to 12 months)	The mean doctor and nurse visits ranged across control groups from 1 to 5 vists per person per year	The mean doctor and nurse visits in the intervention		629 (8)	⊕⊕⊕O moderate [®]	

*The basis for the assumed risk (e.g. the median control group risk across studies) is provided in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

CI: Confidence interval; OR: Odds ratio;

Background: Magnitude of effect

What are the effects if older people wear hip protectors to prevent hip fractures?

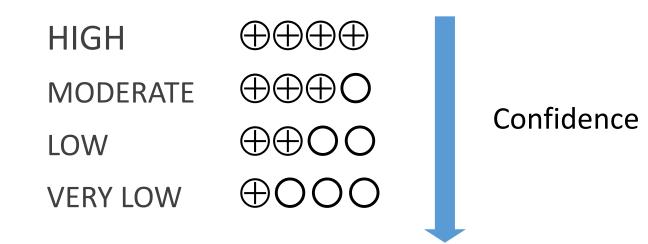
Study or subgroup	Hip protectors No	hip protectors		Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fi	ked,95% Cl		M-H,Fixed,95% Cl
Cristofalo 2013	2/24	0/29		· · ·	2.0 %	6.00 [0.30, 119.27]
Lucas 1984a	9/76	7/83			29.8 %	1.40 [0.55, 3.59]
Lucas 1984b	15/173	12/170			54.0 %	1.23 [0.59, 2.55]
Schanler 2005	3/88	3/78	← ∎		14.2 %	0.89 [0.18, 4.26]
Total (95% CI)	361	360	-	-	100.0 %	1.33 [0.79, 2.25]
Total events: 29 Hip prote	ectors, 22 no hip protector	S				
Heterogeneity: Chi ² = 1.29	9, df = 3 (P = 0.73); l ² =0.0%	6				
Test for overall effect: $Z =$	I.06 (P = 0.29)					
Test for subgroup difference	es: Not applicable					
			1 1			
			0.2 0.5	1 2 5		

Favours Hip protectors, Favours no hip protectors

What is the effect? Do you believe the result? What other information do you need? Discuss...

Study or subgroup	Hip protectors No	hip protectors	F	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fi	(ed,95% Cl		M-H,Fixed,95% Cl
Cristofalo 2013	2/24	0/29		<u> </u>	2.0 %	6.00 [0.30, 119.27]
Lucas 1984a	9/76	7/83			29.8 %	1.40 [0.55, 3.59]
Lucas 1984b	15/173	12/170			54.0 %	1.23 [0.59, 2.55]
Schanler 2005	3/88	3/78	←∎		14.2 %	0.89 [0.18, 4.26]
Total (95% CI)	361	360	-		100.0 %	1.33 [0.79, 2.25]
Total events: 29 Hip prote	ectors, 22 no hip protector	S				
Heterogeneity: Chi ² = 1.29	9, df = 3 (P = 0.73); l ² =0.0%	6				
Test for overall effect: $Z =$	1.06 (P = 0.29)					
Test for subgroup difference	es: Not applicable					
			1 1			
			0.2 0.5	1 2 5		

Favours Hip protectors, Favours no hip protectors


What to consider when making conclusions?

- Do I believe the results from these studies? Risk of bias
- Are the results consistent across studies? Inconsistency
- How do these results apply to my question? Indirectness
- Is this effect size precise? Imprecision
- Are these all of the studies? Publication bias

What about the quality of the evidence?

• quality of evidence or confidence in effect varies from

- High quality:
- Moderate quality:

• Low quality:

• Very low quality:

- **High quality**: We are very confident that the true effect lies close to that of the estimate of the effect
- Moderate quality:

• Low quality:

• Very low quality:

- **High quality**: We are very confident that the true effect lies close to that of the estimate of the effect
- Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
- Low quality:

• Very low quality:

- **High quality**: We are very confident that the true effect lies close to that of the estimate of the effect
- Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
- Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
- Very low quality:

- **High quality**: We are very confident that the true effect lies close to that of the estimate of the effect
- Moderate quality: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
- Low quality: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
- Very low quality: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

How to downgrade the quality of the evidence?

HIGH⊕⊕⊕⊕MODERATE⊕⊕⊕OLOW⊕⊕OOVERY LOW⊕OOO

Lower quality of evidence each time there is a serious concern with

- Risk of bias
- Inconsistency
- Indirectness
- Imprecision
- Publication bias

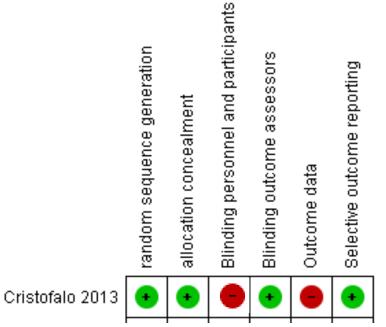
What to consider when making conclusions?

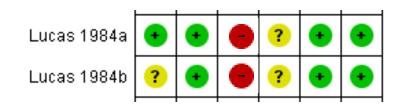
- Do I believe the results from these studies? Risk of bias
- Are the results consistent across studies? Inconsistency
- How do these results apply to my question? Indirectness
- Is this effect size precise? Imprecision
- Are these all of the studies? Publication bias

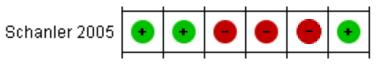
Risk of bias criteria: Cochrane tools

- Random sequence generation
- Allocation concealment
- Blinding
- Incomplete outcome data
- Selective outcome reporting
- Other

www.cochranehandbook.org


Chapter 8




Risk of bias assessment

Is the overall risk of bias...

Not seriousSeriousVery serious

What to consider when making conclusions?

- Do I believe the results from these studies? Risk of bias
- Are the results consistent across studies? Inconsistency
- How do these results apply to my question? Indirectness
- Is this effect size precise? Imprecision
- Are these all of the studies? Publication bias

Inconsistency?

Outcome: 19 Other fractures

Study or subgroup	Hip protectors No	hip protectors	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% Cl		M-H,Fixed,95% Cl
Cristofalo 2013	2/24	0/29		2.0 %	6.00 [0.30, 119.27]
Lucas 1984a	9/76	7/83		29.8 %	1.40 [0.55, 3.59]
Lucas 1984b	15/173	12/170		54.0 %	1.23 [0.59, 2.55]
Schanler 2005	3/88	3/78	· · · · · · · · · · · · · · · · · · ·	14.2 %	0.89 [0.18, 4.26]
Total (95% CI)	361	360		100.0 %	1.33 [0.79, 2.25]
Total events: 29 Hip prote	ectors, 22 no hip protectors				
Heterogeneity: Chi ² = 1.29	P, df = 3 (P = 0.73); $I^2 = 0.0\%$				
Test for overall effect: $Z =$	1.06 (P = 0.29)				
Test for subgroup difference	es: Not applicable				
			0.2 0.5 1 2 5		

Favours Hip protectors, Favours no hip protectors

GRAD

Inconsistency (heterogeneity)

Consider in a meta- analysis

variation in size of effect

> overlap in confidence intervals

If no overlap, then variation between the study results is more than what you would expect by chance

p value of heterogeneity

≻ |²

>Unexplained heterogeneity – did you explore?

Can heterogeneity be explained by subgroup analysis?

	4 mg d	ose	2 mg d	ose		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl
5.1.1 High dependence	cy smoke	rs					
Garvey 2000	24	116	18	115	20.9%	1.32 [0.76, 2.30]	- +
Herrera 1995	30	87	13	81	19.3%	2.15 [1.21, 3.82]	
Kornitzer 1987	24	73	16	86	21.2%	1.77 [1.02, 3.06]	
Tonnesen 1988	12	27	4	33	6.3%	3.67 [1.33, 10.08]	
Subtotal (95% CI)		303		315	67.8%	1.83 [1.34, 2.49]	-
Total events	90		51				
Heterogeneity: Chi ² =	3.45, df=	3 (P =	0.33); l ² =	:13%			
Test for overall effect:	Z = 3.84 (P = 0.0	1001)				
5.1.2 Low Dependence	y Smoke	rs					
Garvey 2000	16	87	17	87	17.0%	0.94 [0.51, 1.74]	
Hughes 1990	5	19	8	20	7.5%	0.66 [0.26, 1.66]	
Kornitzer 1987	5	17	5	8	7.7%	0.47 [0.19, 1.17]	
Subtotal (95% CI)		123		115	32.2%	0.73 [0.47, 1.15]	
Total events	26		30				
Heterogeneity: Chi ^z =	1.60, df=	2 (P =	0.45); l² =	:0%			
Test for overall effect:	Z=1.36 (P = 0.1	7)				
Total (95% CI)		426		430	100.0%	1.36 [1.06, 1.75]	◆
Total events	116		81				
Heterogeneity: Chi ^z =	15.96, df	= 6 (P =	= 0.01); I ^z	= 62%			0.2 0.5 1 2 5
Test for overall effect:							0.2 0.5 1 2 5 Favours 2mg Favours 4mg
Test for subgroup diffe	erences:	Chi ^z = 1	10.91, df:	= 1 (P =	: 0.0010),	l² = 90.8%	Tavouis zing Tavouis 4119

Based on Stead LF, Perera R, Bullen C, Mant D, Lancaster T. Nicotine replacement therapy for smoking cessation. *Cochrane Database of Systematic Reviews* 2008, Issue 1. Art. No.: CD000146. DOI: 10.1002/14651858.CD000146.pub3.

Unexplained heterogeneity

	hyperic		place			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
7.4.1 extract LI 160							
Bjerkenstedt 2005	22	54	21	55	8.2%	1.07 [0.67, 1.70]	
Fava 2005	17	45	9	43	6.0%	1.80 [0.90, 3.60]	
HDTSG 2002	46	113	56	116	10.0%	0.84 [0.63, 1.13]	-•+
Hänsgen 1996	35	53	12	55	7.4%	3.03 [1.77, 5.17]	
Montgomery 2000	55	123	57	124	10.2%	0.97 [0.74, 1.28]	-
Shelton 2001 Subtotal (95% CI)	26	98 4 86	19	102 495	7.6% 49.3 %	1.42 [0.84, 2.40] 1.31 [0.92, 1.86]	•
Total events	201		174				
Heterogeneity: Tau ² =	= 0.14; Ch	i ^z = 20.9	94, df = 5	(P = 0.	0008); I ² =	= 76%	
Test for overall effect							
7.4.2 extract WS 55	70						
Kasper 2006	159	243	26	81	9.6%	2.04 [1.47, 2.83]	
Lecrubier 2002	98	186	80	189	10.7%	1.24 [1.00, 1.54]	
Subtotal (95% CI)		429		270	20.3%	1.57 [0.96, 2.56]	\bullet
Total events	257		106				
Heterogeneity: Tau ² =	= 0.11; Ch	i ^z = 6.28	6, df = 1 (l	P = 0.0	1); I ² = 84	%	
Test for overall effect	:Z=1.79)	(P = 0.0	7)				
7.4.3 extract WS 55							
Kalb 2001	23	37	15	35	8.2%	1.45 [0.92, 2.29]	
Laakmann 1998 Subtotal (95% CI)	24	49 86	16	49 84	7.9% 16.1 %	1.50 [0.92, 2.46] 1.47 [1.05, 2.06]	•
Total events	47		31				
Heterogeneity: Tau ² =	= 0.00; Ch	i ^z = 0.01	l, df = 1 (l	P = 0.9	2); I ² = 0%	5	
Test for overall effect							
7.4.4 extract STW3-	VI						
Gastpar 2006	71	131	51	130	10.3%	1.38 [1.06, 1.80]	
Uebelhack 2004	41	70	4	70	4.0%	10.25 [3.88, 27.09]	
Subtotal (95% CI)		201		200	14.3%	3.59 [0.41, 31.56]	
Total events	112		55				
Heterogeneity: Tau ² =	= 2.33; Ch	i ^z = 18.6	65, df = 1	(P ≤ 0.	0001); I ² =	= 95%	
Test for overall effect	: Z = 1.15	(P = 0.2	5)				
Total (95% CI)		1202		1049	100.0%	1.51 [1.19, 1.92]	•
	617		366				•
Total events	011		500				
Total events Heterogeneity: Tau?:	= 0.13 [,] Cb	P= 51 /	55 $df = 1^{\circ}$	1 (P < 0	1.0000435	I ² = 79%	
Total events Heterogeneity: Tau² = Test for overall effect				1 (P < 0).00001);	l² = 79%	0.1 0.2 0.5 1 2 5 favours placebo favours hyperio

Inconsistency (heterogeneity)

Consider in a meta- analysis

variation in size of effect

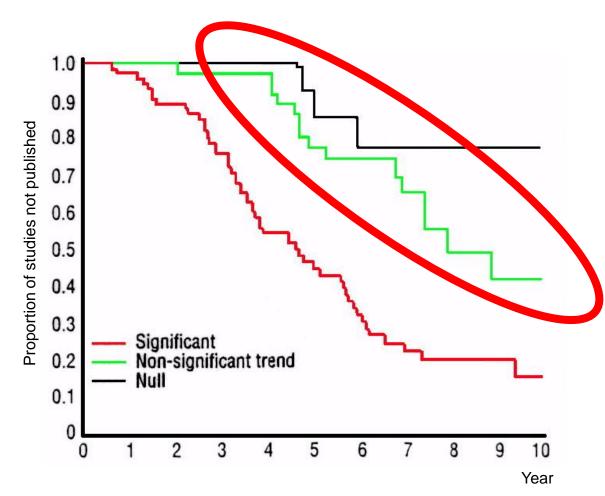
> overlap in confidence intervals

If no overlap, then variation between the study results is more than what you would expect by chance

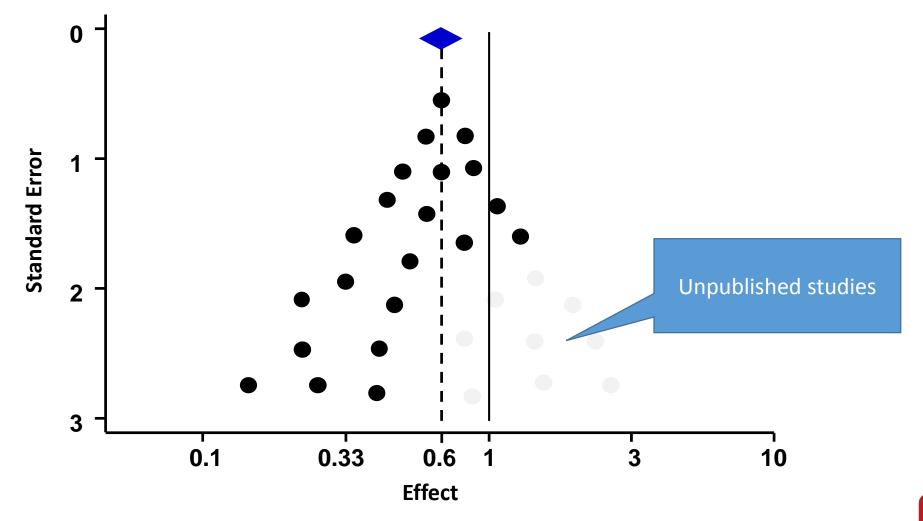
p value of heterogeneity

> |²

Unexplained heterogeneity – NOT CONFIDENT IN EFFECT


What to consider when making conclusions?

- Do I believe the results from these studies? Risk of bias
- Are the results consistent across studies? Inconsistency
- How do these results apply to my question? Indirectness
- Is this effect size precise? Imprecision
- Are these all of the studies? Publication bias


Reporting/Publication bias: Small studies

- less precise than large studies
- usually show 'trends' or 'non-significant results'

Reporting bias: unpublished studies

GRADE

Publication bias

Funnel plot recommended when 10 or more studies

Instead,

- Was the search strategy comprehensive?
- Are foreign language articles missing?
- Mostly small studies?

•

Publication bias

Undetected Strongly suspected

Does the evidence directly answer the question? Indirectness

Consider the extent to which you are uncertain about the applicability of the evidence to your relevant question ncluded with no time or language restrictions. Criteria for considering studies for this review

Consider PICO

- Population
- Intervention and comparison
- Outcome

Nourcomes many outcome was drowsiness (including any measure of fatigue, tiredness, sleepiness or wary outcome was drowsiness (including any measure of fatigue, tiredness, sleepiness or v) outcomes could be calf-renorted or objectively measured at least an minister after the v) outcomes could be calf-renorted or objectively measured at least an minister after the outcome was drowsiness (including any measure of fatigue, tiredness, sleepiness or tcomes could be self-reported or objectively measured at least 30 minutes after the Not about whether evidence is generalisable to other of the method of th populations etc. omes could be self-reported or obju

Outcor

Example: Hip protectors for older people

• Older people

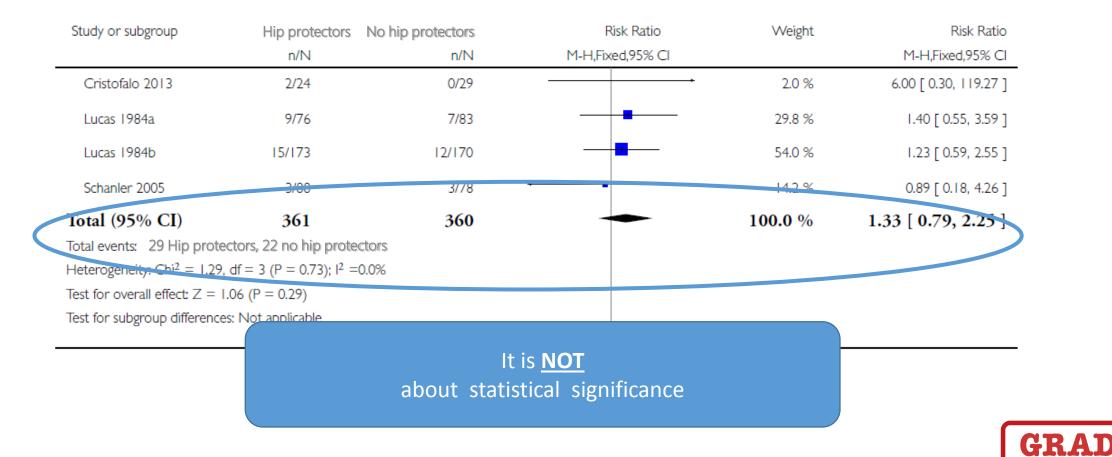
- Most studies included frail elderly
- Hard or soft protectors
 - Most studies used soft
- Hip fracture
 - Some studies radiologically confirmed

CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Birks 2003

Methods	Randomisation of individual participants by a telephone randomisation service
Participants	366 community-dwelling individuals recruited while recovering from a hip fracture in orthopaedic wards of York District Hospital, UK, or volunteers from general population who had sustained a hip fracture in the past Mean age: 80 years Proportion male: 12.6% Inclusion criteria: aged 70 years and over; have sustained one hip fracture; had to have one hip intact; able to give informed consent Exclusion criteria: bed or chair-bound; had bilateral hip replacement; a clothing size of 18 or above
Interventions	Allocation to wear hip protectors. "Intervention group participants were issued with three pairs of hip protectors and general advice (in the form of a leaflet) on how to reduce fracture risk" Controls: "people in the control group received only the leaflet" Hip protectors were Safehip (www.tytex.com our_products/hip_protection/)
Outcomes	Length of follow-up: mean 14 months (range 6 - 41 months) All outcomes were self-reported by post "The main outcome was a second hip fracture." Secondary outcomes were: Number of other fractures


What to consider when making conclusions

- Do I believe the results from these studies? Risk of bias
- Are the results consistent across studies? Heterogeneity
- Are these all of the studies? Reporting bias
- Is this effect size precise? Imprecision
- How do these results apply? Applicability, directness

Are your results precise?

Outcome: 19 Other fractures

Why we need confidence intervals Altman DG. World J Surg 29, 554–556 (2005)

The CI obtained provides a range of uncertainty

ference between two such estimates. The CI is a range of values either side of the estimate between which we can be 95% sure that the true value lies. A series of identical studies carried out

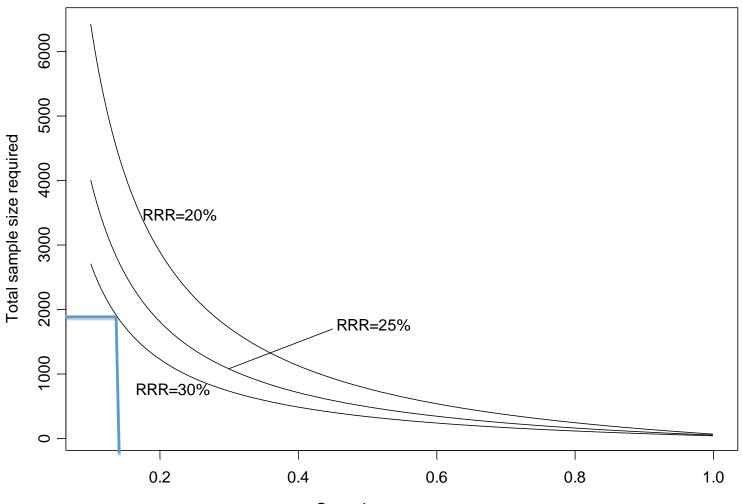
In a comparative study such as an RCT, a common, serious mistake is to conclude from a nonsignificant result (i.e., with p > 0.05) that the groups are "the same." Yet this serious error is

Why we need confidence intervals Altman DG. World J Surg 29, 554–556 (2005)

laparoscopy group [3]. The relative risk is 0.49 with the 95% CI from 0.34 to 0.70. We can interpret this finding as saying that our best estimate is that the risk of recurrence is about halved in the laparoscopy group (relative risk reduction 51%) but that the results are compatible with a reduction in risk of recurrence between 30% and 66%. (The authors cited the odds ratio, which is

Imprecision

Consider


- Sample sizes and number of events
 - assess according to effect size, control event rates, Optimal information size (OIS)
- Width of confidence intervals
 - Wide confidence intervals indicate uncertainty about the effect
 - Includes null effect and appreciable benefit or harm (rule of thumb: RR<0.75 or >1.25)

Optimal information size (OIS)

- if the total number of patients included in a systematic review is less than the number of patients generated by a conventional sample size calculation for a single adequately powered trial, consider rating down for imprecision
- <u>http://www.stat.ubc.ca/~rollin/stats/ssize/</u>

Control group event rate

Optimal information size implications: Consider the <u>total number of events</u>

	Total Number of Events	Relative Risk Reduction	Implications for meeting OIS threshold
	100 or less	<u><</u> 30%	Will almost never meet threshold whatever control event rate
	200	30%	Will meet threshold for control event rates for ~ 25% or greater
	200	25%	Will meet threshold for control event rates for ~ 50% or greater
	200	20%	Will meet threshold only for control event rates for ~ 80% or greater
nable old for	300	<u>></u> 30%	Will meet threshold
down	300	25%	Will meet threshold for control event rates ~ 25% or greater
events	300	20%	Will meet threshold for control event rates ~ 60% or greater
	400 or more	<u>></u> 25%	Will meet threshold for any control event rate
	400 or more	20%	Will meet threshold for control event rates of ~ 40% or greater

GRAI

Reasonable threshold for rating down for imprecision = 300 events

Rules of thumb

Dichotomous outcomes

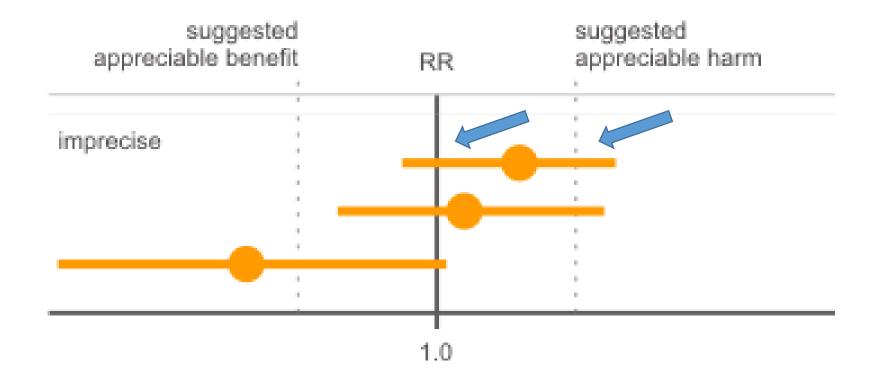
• 300 events

Continuous outcomes

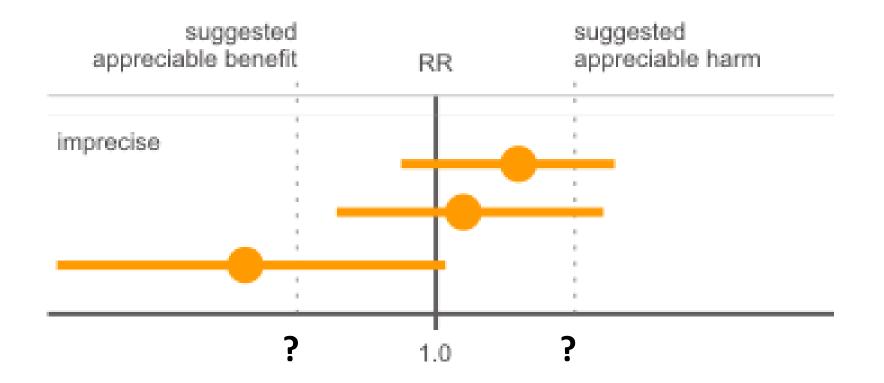
• 400 people providing outcome measures

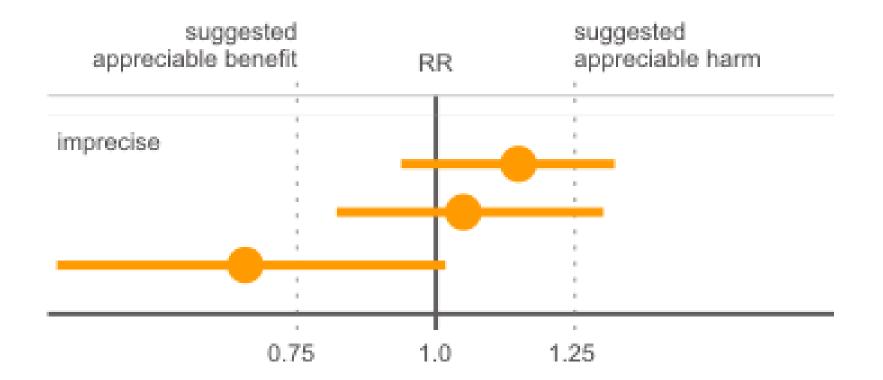
Imprecision

Consider

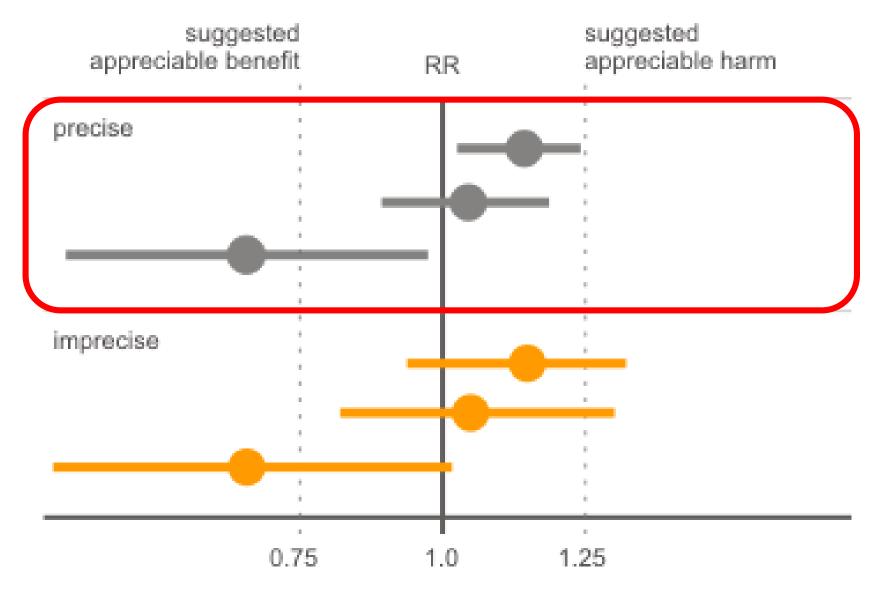

- Sample sizes and number of events
 - assess according to effect size, control event rates. Optimal information size (OIS)

NOT just null effect


- Width of confidence intervals
 - Wide confidence intervals indicate uncertainty about the effect
 - Includes null effect and appreciable benefit or harm (rule of thumb: RR<0.75 or >1.25)


Imprecision: CI includes null <u>AND</u> appreciable benefit or harm

Imprecision: CI includes null <u>AND</u> appreciable benefit or harm



Imprecision: CI includes null <u>AND</u> appreciable benefit or harm

rule of thumb: RR <0.75 or >1.25

Precise:

Exception to the rule

Small absolute effects

When event rates are very low, 95% confidence intervals around relative effects can be very wide, but 95% confidence intervals around absolute effects may be narrow. Under such circumstances one may decide not to downgrade the quality of evidence for imprecision.

	Magnes	sium	Place	ebo		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Abraham 1987	1	48	1	46	0.0%	0.96 [0.06, 15.77]	
Bhargava 1995	3	40	3	38	0.1%	0.95 [0.18, 5.00]	
Ceremuzynski 1989	1	25	3	23	0.1%	0.28 [0.03, 2.88]	
Feldstedt 1991	10	150	8	148	0.3%	1.25 [0.48, 3.26]	
Gyamlani 2000	2	50	10	50	0.4%	0.17 [0.03, 0.81]	
ISIS-4 1995	2216	29008	2103	29038	71.6%	1.06 [1.00, 1.13]	
MAGIC 2000	475	3113	472	3100	14.8%	1.00 [0.87, 1.15]	+
Morton 1984	1	40	2	36	0.1%	0.44 [0.04, 5.02]	
Nakashima 2004	1	89	3	91	0.1%	0.33 [0.03, 3.27]	
Raghu 1999	6	169	18	181	0.6%	0.33 [0.13, 0.86]	
Rasmussen 1986	4	56	14	74	0.4%	0.33 [0.10, 1.06]	
Santoro 2000	0	75	1	75	0.1%	0.33 [0.01, 8.20]	
Shechter 1990	1	50	9	53	0.3%	0.10 [0.01, 0.82]	
Shechter 1991	2	21	4	25	0.1%	0.55 [0.09, 3.37]	
Shechter 1995	4	96	17	98	0.6%	0.21 [0.07, 0.64]	
Singh 1990	6	81	11	81	0.4%	0.51 [0.18, 1.45]	
Smith 1986	2	92	7	93	0.3%	0.27 [0.06, 1.35]	
Thogersen 1995	4	130	8	122	0.3%	0.45 [0.13, 1.54]	
Urek 1996	1	31	0	30	0.0%	3.00 [0.12, 76.58]	
Woods 1992	90	1150	118	1150	4.0%	0.74 [0.56, 0.99]	-+-
Wu 1992	5	125	12	102	0.5%	0.31 [0.11, 0.92]	
Zhu 2002	101	1691	134	1488	4.9%	0.64 [0.49, 0.84]	-
Total (95% CI)		36330		36142	100.0%	0.99 [0.94, 1.04]]
Total events	2936		2958				- I
Heterogeneity: Chi ² =	57.78, df=	= 21 (P <	0.0001);	I² = 64%	6		
Test for overall effect:	-	-				-	0.01 0.1 1 10 100
			-			F	avours experimental Favours control

Imprecision?

Outcome: 19 Other fractures

Risk Ratio	Weight	Risk Ratio	lo hip protectors	Hip protectors	Study or subgroup
M-H,Fixed,95% Cl		M-H,Fixed,95% Cl	n/N	n/N	
6.00 [0.30, 119.27]	2.0 %		0/29	2/24	Cristofalo 2013
1.40 [0.55, 3.59]	29.8 %		7/83	9/76	Lucas 1984a
1.23 [0.59, 2.55]	54.0 %		12/170	15/173	Lucas 1984b
0.89 [0.18, 4.26]	14.2 %	• •	3/78	3/88	Schanler 2005
1.33 [0.79, 2.25]	100.0 %		360	361	Total (95% CI)
			DIS	ectors, 22 no hip protecto	Total events: 29 Hip prote
)%	, df = 3 (P = 0.73); I ² =0.0	Heterogeneity: Chi ² = 1.29
				1.06 (P = 0.29)	Test for overall effect: $Z = 1$
				es: Not applicable	Test for subgroup difference

0.2 0.5 I 2 5

Favours Hip protectors, Favours no hip protectors

What is the conclusion?

Other fractures Outcome: 19

Study or subgroup Hip protectors No hip protectors Risk Ratio Weight Risk Ratio n/N n/N M-H,Fixed,95% CI M-H,Fixed,95% CI Cristofalo 2013 0/29 2.0 % 2/24 6.00 [0.30, 119.27] 9/76 7/83 Lucas 1984a 29.8 % 1.40 [0.55, 3.59] Lucas 1984b 15/173 12/170 54.0 % 1.23 [0.59, 2.55] Schanler 2005 3/88 3/78 14.2 % 0.89 [0.18, 4.26] Total (95% CI) 361 360 100.0 % 1.33 [0.79, 2.25] Total events: 29 Hip protectors, 22 no hip protectors Heterogeneity: $Chi^2 = 1.29$, df = 3 (P = 0.73); $I^2 = 0.0\%$ Test for overall effect: Z = 1.06 (P = 0.29) Test for subgroup differences: Not applicable

> 0.2 5 Favours Hip protectors, Favours no hip protectors

2

0.5

Overall quality of evidence?

Risk of bias? Inconsistency? Indirectness? Imprecision? Publication bias?

Quality of evidence? HIGH, MODERATE, LOW, VERY LOW?

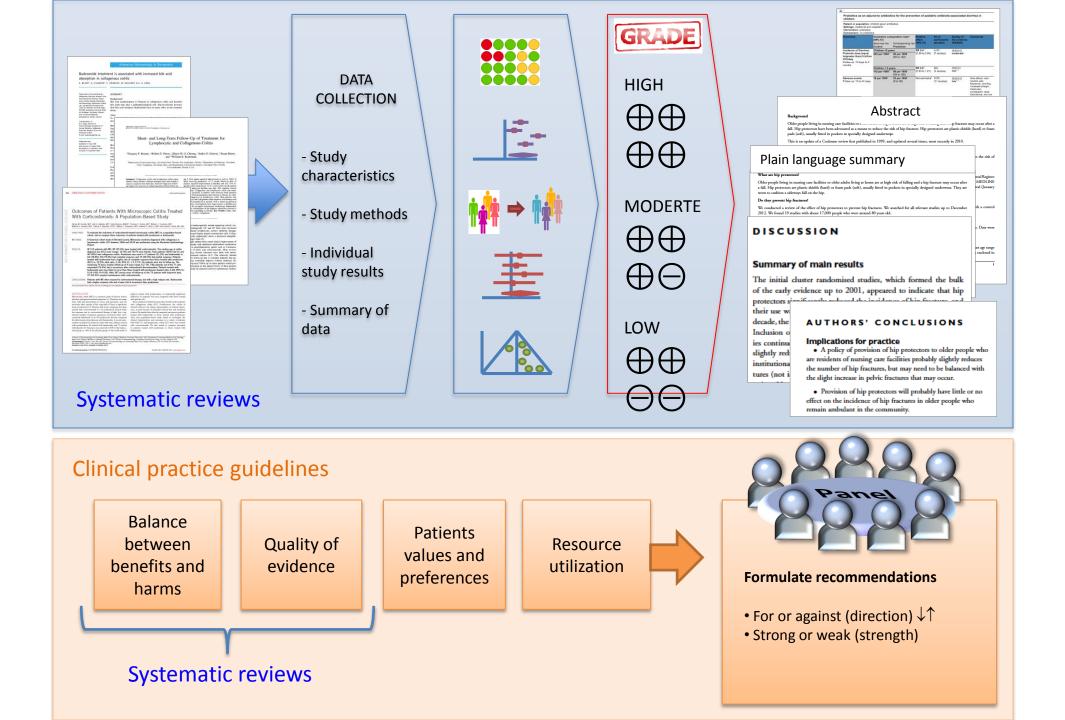
Other	Moderate		RR 1.33	721	$\Theta \Theta \bigcirc \bigcirc$	
fractures	60 per 1000	60 per 1000 80 per 1000 (47 to 135)		(4 RCTs)	LOW	

Downgraded for risk of bias, and imprecise results due to few events and participants in trials.

Wearing hip protectors may increase the risk of other fractures (low quality evidence)

GDT exercise: Creating an Summary of Findings Tables (SoF)

http://www.gradepro.org



Revman file and example of SoF http://cebgrade.mcmaster/hyderabad

GRADE for systematic reviews and for clinical practice guidelines

Additional resources

http://www.cochrane-handbook.org: Chapters 11 and 12

http://www.gradeworkinggroup.org

 Publications about GRADE criteria from Journal of Clinical Epidemiology and events

http://cebgrade.mcmaster.ca

- Online training modules for GRADE and Summary of Findings Tables

http://tech.cochrane.org/revman/other-resources/gradepro

- More training materials for GRADEproGDT

Contact us at support@gradepro.org

Additional slides

What can raise quality?

Large magnitude

- Very large upgrade two levels (RR > 5 or RR < 0.2)
- Large upgrade 1 level (RR > 2 or RR < 0.5)
- everyone used to do badly but after treatment almost everyone does well

Example: parachutes to prevent death when jumping from airplanes

Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials

Gordon C S Smith, Jill P Pell

Relative risk reduction:> 99.9 % (1/100,000) U.S. Parachute Association reported 821 injuries and 18 deaths out of 2.2 million jumps in 2007

Analysis I.3. Comparison I Motorcycle helmet versus no helmet, Outcome 3 Head Injury (adjusted).

Review: Helmets for preventing injury in motorcycle riders

Comparison: I Motorcycle helmet versus no helmet

Outcome: 3 Head Injury (adjusted)

Study or subgroup	log [Adjusted Odds Ratio] (SE)	Adjusted Odds Ratio IV,Random,95% Cl	Weight	Adjusted Odds Ratio IV,Random,95% Cl
I Case-control studies				
Gabella 1995	-0.8796 (0.342)		8.9 %	0.41 [0.21, 0.81]
Tsai 1995	-1.3471 (0.3089)		10.9 %	0.26 [0.14, 0.48]
Subtotal (95% CI)		•	19.8 %	0.32 [0.20, 0.51]
Heterogeneity: Tau ² = 0.00; C	$Chi^2 = 1.03$, $df = 1$ (P = 0.31); $I^2 = 3\%$			
Test for overall effect: $Z = 4.8$	9 (P < 0.00001)			
2 Cross-sectional studies				
Christian 2003	-1.4697 (0.2547)	-#-	15.9 %	0.23 [0.14, 0.38]
Romano 1991	-1.335 (0.2057)	+	23.9 %	0.26 [0.18, 0.39
Rowland 1996	-1.1314 (0.2233)	+	20.4 %	0.32 [0.21, 0.50]
Sauter 2005	-0.8439 (0.2263)	-	19.9 %	0.43 [0.28, 0.67
Subtotal (95% CI)		•	80.2 %	0.30 [0.24, 0.39]
Heterogeneity: Tau ² = 0.02; C	$Chi^2 = 4.11$, df = 3 (P = 0.25); $I^2 = 27\%$			
Test for overall effect: $Z = 8.9$	8 (P < 0.00001)			
Total (95% CI)		•	100.0 %	0.31 [0.25, 0.38]
Heterogeneity: $Tau^2 = 0.00$; C	$Chi^2 = 5.18$, df = 5 (P = 0.39); $I^2 = 3\%$			
Test for overall effect: $Z = 11$.	41 (P < 0.00001)			

Favours treatment

What can raise quality?

Dose response relation

Example: childhood lymphoblastic leukemia

- risk for CNS malignancies 15 years after cranial irradiation
- no radiation: 1% (95% CI 0% to 2.1%)
- 12 Gy: 1.6% (95% CI 0% to 3.4%)
- 18 Gy: 3.3% (95% CI 0.9% to 5.6%)

What can raise quality?

Effects of plausible residual confounding

- may be working to reduce the demonstrated effect or
- increase the effect if no effect was observed

All plausible residual confounding would result in an overestimate of effect

Example: Metformin

- Hypoglycaemic drug phenformin causes lactic acidosis
- The related agent metformin is under suspicion for the same toxicity.
- Large observational studies have failed to demonstrate an association even though clinicians would be more alert to lactic acidosis in the presence of the agent

Example: Vaccination and autism

Other situations

Can you use GRADE?

Narrative synthesis – no meta-analysis

Can still use criteria to evaluate quality of the evidence

Criteria to downgrade the evidence

- 1. Risk of bias
- 2. Inconsistency (or heterogeneity)
- 3. Indirectness (*PICO and applicability*)
- 4. Imprecision (number of events and confidence intervals)
- 5. Publication bias

Plus additional factors to increase the quality of the evidence

- 1. Response
- 2. size of effect
- 3. confounding

Observational studies

Can still use criteria to evaluate quality of the evidence

Criteria to downgrade the evidence

- 1. Risk of bias OBSERVATIONAL STUDIES START AS LOW (new NRS tool?)
- 2. Inconsistency
- 3. Indirectness
- 4. Imprecision
- 5. Publication bias

Plus additional factors to increase the quality of the evidence

- 1. Response
- 2. size of effect
- 3. confounding

Only found 1 study

Can still use criteria to evaluate quality of the evidence

Criteria to downgrade the evidence

- 1. Risk of bias
- 2. Inconsistency
- 3. Indirectness
- 4. Imprecision
- 5. Publication bias

Plus additional factors to increase the quality of the evidence

- 1. Response
- 2. size of effect
- 3. confounding

